
Upscaled flow and transport properties for heterogeneous

unsaturated media

Raziuddin Khaleel

Fluor Federal Services, Richland, Washington, USA

T.-C. Jim Yeh

Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, USA

Zhiming Lu

Earth and Environmental Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Received 6 November 2000; revised 5 November 2001; accepted 5 November 2001; published 11 May 2002.

[1] To represent a heterogeneous unsaturated medium by its homogeneous equivalent, stochastic
theory-based analytical formulas and numerical Monte Carlo simulations are used to obtain
upscaled (effective) flow and transport properties. The Monte Carlo experiments simulate steady
state flow and transient transport of nonreactive solute in two-dimensional heterogeneous
media. Constitutive relations for unsaturated media at the mesh-size scale are based on the van
Genuchten-Mualem relationships. A unit-mean-gradient approach is used to derive upscaled
properties for flow parallel and perpendicular to bedding. Upscaled moisture retention and
unsaturated conductivities (K ) and longitudinal dispersivities are obtained by simulating steady
gravity drainage conditions for a series of applied infiltration rates, characteristic of relatively dry
conditions in coarse-textured sediments. Macrodispersivities are calculated on the basis of spatial
moments of the ensemble-mean plume. Results show that the calculated effective unsaturated K
based on the analytical formulas compare well with those based on Monte Carlo simulations. The
macroscopic anisotropy (ratio of K parallel to bedding to K perpendicular to bedding) increases
with increasing tension, although the increase is rather mild. The longitudinal macrodispersivity for
the equivalent homogeneous medium also increases with increasing tension. A comparison of
numerical results with stochastic solutions suggests that the computed dispersivities are of the same
order of magnitude at low tensions. At higher tensions the dispersivity estimates deviate
significantly. Nonetheless, both numerical and analytical results show that the longitudinal
dispersivities for flow parallel to bedding are higher than those for flow perpendicular to bedding.
In addition, our results suggest that the Fickian regime is reached much earlier for cases with flow
perpendicular to bedding than for those with flow parallel to bedding. INDEX TERMS: 1869
Hydrology: Stochastic processes; 1875 Hydrology: Unsaturated zone; 1866 Hydrology: Soil
moisture; 1829 Hydrology: Groundwater hydrology; KEYWORDS: vadose zone, spatial variability,
numerical modeling, stochastic processes, effective properties, equivalent media

1. Introduction

[2] Geologic formations are heterogeneous at various length

scales. A conventional approach to modeling flow and transport in

geological formations is to incorporate into models the overall

heterogeneity of the system such as geologic layering. An alter-

native approach is to define an equivalent homogeneous medium

with upscaled (effective or macroscopic) flow and transport proper-

ties and thereby predict the mean flow and transport behavior at the

field scale [Yeh, 1998]. However, to represent a heterogeneous

medium by its homogeneous equivalent, one needs to estimate the

effective flow and transport properties that represent this equivalent

homogeneous medium.

[3] Numerous studies have investigated the effective flow and

transport properties for geological formations under saturated con-

ditions [see Gelhar, 1993]. Few studies have investigated the

effective properties for partially saturated media. Theoretical work

[e.g., Mualem, 1984; Yeh et al., 1985a, 1985b; Mantoglou and

Gelhar, 1987; Green and Freyberg, 1995], numerical simulations

[e.g., Yeh, 1989; Desbarats, 1998;Wildenschild and Jensen, 1999b;

Bagtzoglou et al., 1994; Polmann et al., 1991; Ababou, 1988] and

experimental studies [e.g., Stephens and Heermann, 1988; Yeh and

Harvey, 1990; McCord et al., 1991; Wildenschild and Jensen,

1999a] of unsaturated flow indicate that the effective hydraulic

conductivity (K ) tensor for stratified sediments can exhibit moisture

or tension-dependent anisotropy. That is, the anisotropy (ratio of K

parallel bedding to K perpendicular to bedding) increases with

increasing tension. For solute transport, several studies [e.g., Man-

toglou and Gelhar, 1985; Polmann, 1990; Russo, 1993; Harter and

Yeh, 1996; Roth and Hammel, 1996; Birkholzer and Tsang, 1997]

suggest that the macrodispersivity in unsaturated media increases

with a decrease in saturation. While these results are interesting,

most of the studies have focused on the flow and transport behavior

in coarse-textured media for tension values that are on the order of

100 cm. Furthermore, few studies have investigated the effect of

orientation of geological structures (i.e., layering) on the flow and

solute transport behavior. The objective of this work is to investigate

the effective flow and transport properties for unsaturated coarse-

textured media under relatively dry conditions (tensions as high as
Copyright 2002 by the American Geophysical Union.
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20 m) that are prevalent in arid regions of the western United States.

Also examined is the effect of orientation of bedding on the flow

and transport properties; the numerical results are compared with

results based on stochastic solutions.

2. Effective Parameters for Flow and Transport

[4] Consider steady infiltration through a vertical heterogeneous

unsaturated medium in the x– z plane that is visualized as a

collection of many porous elements. Each element has an isotropic

hydraulic conductivity, K(y), which varies with pressure head, y.
The steady flux, q, in each element is described by Darcy’s law:

q ¼ �K yð Þr yþ zð Þ: ð1Þ

Suppose that the hydraulic conductivity, K(y), in the x–z plane, is

a stochastic process. Thus there exists an infinite number of

realizations of such conductivities and corresponding pressure head

fields and fluxes.

[5] An effective conductivity can be viewed as the ability of a

fictitious medium to transmit the ensemble mean flux, hqi, under the
ensemble mean hydraulic gradient, hJi, with hi denoting the ensem-

ble average. If the ensemble averages, hqi and hJi, are equivalent to
averages over a field-scale representative elementary volume

(FSREV), then the effective K of the fictitious medium is referred

to as the effective conductivity for an equivalent homogeneous

medium [Yeh, 1998]. The governing steady state flow equation for

the equivalent homogeneous medium then takes the form

r	 Ke yh ið Þr yh i þ zð Þf g ¼ 0; ð2Þ

where Ke is the unconditional effective unsaturated K, the

proportionality constant between hqi and hJi.
[6] Consider solute movement in the same heterogeneous media

used to describe the effective flow parameters. Suppose that the

solute concentration, C, is a spatial stochastic process as a result of

random velocity due to random gradient and conductivity field. The

ensemble mean convection-dispersion equation for the unsaturated

zone is [Mantoglou and Gelhar, 1985; Harter and Yeh, 1996]

r 	 Dijr Ch i
� �

� Vh i 	 r Ch i ¼ @ Ch i
@t

; ð3Þ

where hVi is the mean velocity and is equal to hqi/hqi; hqi is the
mean moisture content and Dij is the macrodispersion coefficient

tensor, which represents dispersion caused by variations in velocity

at scales smaller than the FSREV. If we assume that the

macrodispersion coefficient is linearly proportional to the mean

velocity, the constant of proportionality is called the macrodis-

persivity. Note that the ensemble mean equations (2) and (3) have

the same form as those of the laboratory-scale problem, implying

that the laboratory-scale equations can be scaled up for field-scale

problems. However, it should be noted that the predicted ensemble

mean pressure head, hyi, and concentration, hCi can be quite

different from those observed in the field unless the ergodicity in

terms of head and concentration is met.

3. Heterogeneous Vadose Zone and Numerical
Setup

[7] To derive the effective unsaturated K and macrodispersivity,

discussed in section 2, we considered a synthetic unsaturated zone.

The unsaturated zone is a vertical, two-dimensional domain, 20 m

wide and 20 m deep, and is discretized into 50 � 50 blocks with

each block size being 0.4 m � 0.4 m. The medium within each

block is considered as uniform, whose unsaturated hydraulic

properties are assumed to follow van Genuchten [1980] and

Mualem [1976] (vG-M) models:

q yð Þ ¼ qs � qrð Þ 1þ ajyjð Þn½ ��mþqr

K yð Þ ¼ Ks

1� ajyjð Þn�1
1þ ajyjð Þn½ ��m

� �2

1þ ajyjð Þn½ �m=2
;

ð4Þ

where qs and qr are saturated and residual water contents, Ks is the

saturated hydraulic conductivity, a and n are soil parameters, and

m = 1 � 1/n.

[8] The media heterogeneity is represented by treating the vG-

M parameters of each block as stochastic processes characterized

by their means, standard deviations, and correlation functions. The

means and standard deviations for each parameter are listed in

Table 1 and are based on laboratory measurements of moisture

retention and unsaturated K for coarse-textured sandy samples

from the upper Hanford formation at the Hanford Site, Washington

[Khaleel, 1999].

[9] Stochastic model results used to compare against the numer-

ical results are based on the Gardner [1958] model,

K yð Þ ¼ Ksexp byð Þ; ð5Þ

where b is a fitting parameter. Equation (5) can be written as

ln K yð Þ ¼ ln Ks þ by: ð6Þ

Equation (6) is referred to as the log linear model, since ln K is

linearly related to y through the constant slope b. However, such a

constant slope is often inadequate in describing ln K(y) over

ranges of tension of practical interest for field applications. As an

alternative, the slope b can be approximated locally by straight

lines over a fixed range of tension [Polmann, 1990]. The ln Ks term

in equation (6) can then be derived by extrapolating the local

slopes back to zero tension; the extrapolated K is denoted as K0 to

avoid confusion with Ks.

[10] To apply the Gardner model, unsaturated K values based on

the vG-M model are divided into two y intervals (i.e., 0 to �1 m

and �5 to �20 m). For each y interval the Gardner model is

regressed against the conductivity data for each sample to obtain

the parameter values for K0 and b. The mean and standard

deviation for the two parameters are listed in Table 2.

[11] A random field generator, based on Fast Fourier Transform

[Gutjahr, 1989], is used to generate realizations for parameters Ks,

a, and n and for each block in the flow domain. Parameters qr and
qs are treated as deterministic constants because of their relatively

Table 1. Mean and Standard Deviation of Parameters for the van

Genuchten-Mualem Model

Parameter Mean Standard Deviation

Ln Ks, m/d 0.752 0.627
Ln a, 1/m 1.460 0.341
Ln n 0.600 0.089
qs 0.397 0.031
qr 0.027 0.004
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small variability. A realization of the parameter fields is shown in

Figure 1. The parameter fields are generated according to the

spatial statistics specified in Table 1 and are considered independ-

ent of each other. However, any parameter field itself is correlated

in space, characterized by an exponential correlation function. The

integral scale of the exponential model for each parameter is

assumed the same. The horizontal (lx) and vertical (lz) integral
scales are 5 and 1 m, respectively. Each block is then divided into a

number of elements (four elements in the vertical and one in the

horizontal) to ensure accuracy of the numerical solution.

[12] To derive effective parameters in principal directions, two

flow configurations are considered: (1) flow perpendicular to

bedding (i.e., perpendicular to the direction of lx) and (2) flow

parallel to bedding (i.e., parallel to the direction of lx). Note that

flow parallel to bedding is analyzed by rotating the media for flow

perpendicular to bedding (i.e., Figure 1) by 90�; the gradient

remains parallel to gravity for both cases. A finite element code,

MMOC2 [Yeh et al., 1993], is used to solve equation (2) directly

for steady state flow. No-flow boundaries are assigned to opposing

sides of the flow domain. A method similar to that developed by

Harter and Yeh [1993] is used to facilitate the convergence of the

numerical solution for steady state infiltration in the presence of

unit gradient. For a prescribed mean pressure head the infiltration

rate is calculated based on mean values for ln Ks, a, and n. An

initial guess of the y field is made in the presence of unit gradient

condition in each block. A root-finding procedure is used to

determine the y value corresponding to the calculated infiltration

rate and the parameter values for each element. The calculated y
values at the bottom boundary are then taken as the prescribed head

boundary condition. The y values for the rest of the solution

domain are then treated as our initial guesses for a prescribed flux

at the top and a prescribed head boundary condition at the bottom.

[13] The flow simulations and the subsequent derivation of the

effective unsaturated K are followed by transport simulations and

the derivation of macrodispersivity. The MMOC2 is again used to

simulate the concentration distribution of a conservative solute at

various times for different mean pressure heads. The MMOC2

solves equation (3), using the modified method of characteristics.

[14] For the transport simulation, a zero initial concentration is

assigned throughout the flow domain. A zero-concentration flux

boundary is assigned to the left and right sides of the flow domain.

A zero-diffusive flux boundary is assigned at the bottom. A

prescribed concentration boundary that can vary with time but is

uniform in space is used at the upper boundary to represent an

instantaneous release of a conservative tracer. Both longitudinal

and transverse local dispersivities at the mesh scale are assigned

zero values so that the inherent numerical dispersion is the sole

cause of local dispersion. The time step sizes used for each

transport run under different mean pressure heads are chosen to

avoid numerical instability and minimize numerical dispersion.

4. Methods of Analysis

[15] To derive the effective unsaturated hydraulic properties,

four different approaches (i.e., analytical method, Monte Carlo

simulations, direct averaging method, and tracer mass analysis), as

described in sections 4.1, 4.2, 4.3, and 4.4, are used. A moment

approach is used to obtain the macrodispersivity estimates.

4.1. Analytical Method

[16] The effective unsaturated K is determined using analytical

expressions developed by Yeh et al. [1985a, 1985b] and Yeh

[1989]. Assuming that the flow domain is perfectly stratified

(i.e., lx > lz) and ln Ks and b are statistically independent, the

Table 2. Mean and Standard Deviation of Parameters for the Gardner Model

Pressure Head �1.0 to 0.0 m Pressure Head �20.0 to �5.0 m

Mean Standard
Deviation

Mean Standard
Deviation

ln K0, m/d 0.253 0.771 �12.01 1.276
b, 1/m 8.133 1.493 0.37 0.040

Figure 1. (a) Ks, (b) a, and (c) n parameter fields for a realization.
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effective conductivity in two principal directions (i.e., flow per-

pendicular to bedding (KV) and parallel to bedding (KH)) are

KV ¼ exp F �
s2f

2 1þ Blzð Þ � B� 2lz þ jH jð Þ
2 1þ Blzð Þ s

2
b

� �
jH j

" #
;

KH ¼ exp F þ
s2f

2 1þ Blzð Þ � B� 2lz � jH jð Þ
2 1þ Blzð Þ s

2
b

� �
jH j

" #
;

ð7Þ

where F is the mean of ln Ks, B is the mean of b, sf
2 is the variance

of ln Ks, sb
2 is the variance of b, and H is the mean pressure head.

The correlation functions for ln Ks and b are assumed to be

exponential and have the same correlation length. Note that in

applying equation (7) and in computing ln Ks statistics and

correlation functions, ln Ks is replaced by ln K0.

4.2. Monte Carlo Simulations

[17] The Monte Carlo (MC) simulations simulate steady state,

gravity infiltration for 50 realizations of a heterogeneous medium.

For a specified infiltration rate the simulated pressure head dis-

tributions for 50 realizations are averaged to yield a mean pressure

head, H. Because the simulated flow field is under a unit mean

gradient condition, the infiltration rate is equal to the effective

conductivity at the calculated H. Repeating the procedure for

different infiltration rates, we obtain the effective unsaturated K

relationship. Similarly, we average the moisture content over the

ensemble and the flow domain to derive an average q that

corresponds to the mean pressure head. Such averages of q and

H pairs constitute the effective moisture retention curve (MRC).

4.3. Direct Averaging Method

[18] The direct averaging method [Yeh et al., 1985b] involves

generating the conductivity value at a given pressure head for each

element of the flow domain on the basis of the parameter values for

a given realization. To derive the effective K for flow perpendicular

to bedding and for flow parallel to bedding, the conductivity values

for all elements over the number of realizations at a given y are

averaged respectively using harmonic and arithmetic averaging, as

in saturated media. A similar approach is also used to derive the

effective MRC. In this case, an arithmetic averaging of the q values
(generated on the basis of the model and parameter values for a

given y) for all elements of the flow domain and realizations is

used to obtain an average q at a given y. Note that direct averaging
is also a particular case of the anisotropic power averaging scheme

[Ababou et al., 1991].

4.4. Tracer Mass Analysis

[19] In this analysis, a moment method, described later

(section 4.5), is used to determine the position of the center of the

simulated ensemble-mean tracer plume at various times. The

velocity of the center of the plume is then determined. The product

of the velocity and the average water content approximates the mean

infiltration flux, which is equivalent to the effective K at the mean

pressure head when the flow is under a unit mean gradient condition

(hJi = 1), i.e.,

qh i ¼ Ke Jh i ¼ Ke: ð8Þ

The procedure is applied to flow perpendicular and parallel to

bedding to obtain the effective conductivity along both principal

directions.

4.5. Moment Analysis for Macrodispersivity

[20] For a given steady flow and a prescribed flux the migration

and spread of a slug of tracer is simulated. Snapshots are taken of

the two-dimensional plume distribution at different times. The

snapshot at each sampling time is then averaged over the length

across the flow domain to obtain the solute concentration profiles

as a function of depth. The concentration profiles for all realiza-

tions are averaged to obtain the ensemble mean profile. These

profiles are then used to evaluate their spatial moments using

M ið Þ ¼
Z

z iq i zð ÞCi z; tð Þdz; ð9Þ

whereM(i) is the ithmoment of the solute plume, and the superscript,

i, refers to the ith order of themoment. The zeromoment,M(0), is the

total mass for a concentration profile; M(1) corresponds to the

location of the center of mass at time t;M(2) represents the spread of

the plume around its center; andM(3) describes the skewness of the

plume profile.

[21] The calculated second spatial moment of the plume about

the center of mass (i.e., spatial variance) over time allows estima-

tion of the longitudinal macrodispersivity [Harter and Yeh, 1996].

Specifically, for both principal directions the time derivative of the

intermediate stage of the spatial variance, where the variance is

approximately linearly proportional to time, yields the longitudinal

macrodispersion coefficient, D, i.e.,

1

2

@s2

@t
¼ D; ð10Þ

where s2 is the spatial variance and t is time. Again, the moment

data for early and late times are ignored to avoid possible boundary

effects. The macrodispersivity, A, is defined as

A ¼ D= Vh i: ð11Þ

5. Results and Discussion

5.1. Simulated Flow Fields and Trajectories for a
Single Realization

[22] For the parameter fields shown in Figure 1, the simulated

pressure head field and flow trajectories for flow perpendicular to

bedding and for mean pressure heads, H, of �1, �5, �10, and �20

m are illustrated in Figure 2. Results for flow parallel to bedding

are shown in Figure 3.

[23] As shown in Figures 2 and 3, the head pattern changes as

the medium moves from a less negative H to a more negative H

value. For H = �1 m, the head variation is negligible, and for the

particular boundary conditions considered, the flow field tends to

be one-dimensional (vertical downward), regardless of flow being

perpendicular (Figure 2a) or parallel to bedding (Figure 3a). As H

becomes more negative, the head variation becomes more notice-

able. The variation is the greatest at H = �20 m. These results

agree with the finding that the head variability increases as the

mean pressure head becomes more negative or the medium

becomes less saturated [Yeh et al., 1985a, 1985b]. Similar results

were also reported by other investigators [e.g., Wildenschild and

Jensen, 1999b; Harter and Yeh, 1996]. Our results, of course, are

based on uncorrelated a and ln Ks. With a positive correlation of a
and ln Ks, the variability can approach zero and then increase [Yeh,

1989; Ababou, 1988].
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[24] Also, the trajectories are nearly straight and vertical at low

mean tensions (Figures 2a and 3a) and become more tortuous at

mean tensions in excess of 1 m (Figures 2b–2d and Figures 3b–3d).

Wildenschild and Jensen [1999b] and Harter and Yeh [1996] also

observed an increase in tortuosity with a decrease in saturation. It is

interesting to note that the tortuosity of the flow path appears to be

less for flow parallel to bedding (Figure 3) than for flow perpen-

dicular to bedding (Figure 2). As discussed later (section 5.3), this

finding sheds light on the effect of bedding orientation on macro-

dispersion. Our results for the pressure heads and the associated

trajectories in Figures 2 and 3 also are similar to those of Ursino et

al. [2000], who studied upscaling of unsaturated conductivity for

different pore-scale geometries for mean tensions of up to 1.6 m.

Similar to our findings, Ursino et al. also observed less tortuosity in

their ‘‘column’’ system (analogous to parallel to bedding) than in

their ‘‘layer’’ system (analogous to perpendicular to bedding).

5.2. Effective Unsaturated Hydraulic Properties

[25] Effective unsaturated K curves based on the MC simula-

tion, analytical, direct averaging, and tracer analyses are shown in

Figures 4a and 4b for flow perpendicular and parallel to bedding,

respectively. In general, the numerical results compare favorably to

results based on the analytical solution and suggest dependence of

macroscopic hydraulic anisotropy on the mean pressure head

(Figure 5). This is an important result, considering the fact that

the stochastic theory, although widely used and cited, has not been

tested otherwise for the relatively high-tension regime considered

in this work. Unlike our work, other studies [e.g., McCord et al.,

Figure 2. Simulated pressure head field and streamlines for flow perpendicular to bedding for mean pressure heads,
H, of (a) �1 m, (b) �5 m, (c) �10 m, and (d) �20 m.
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1991; Yeh and Harvey, 1990; Wildenschild and Jensen, 1999a,

1999b] are for a much lower-tension regime.

[26] As with the analytical method (equation (7)), the direct

averaging also produces the tension-dependent, anisotropic, unsa-

turated effective K (Figures 4 and 5). However, for the tension

range of interest, direct averaging yields a consistently higher

anisotropy than the stochastic method. For direct averaging, the

arithmetically averaged values yield the upper bound for the

effective unsaturated K, as in saturated flow, whereas the harmon-

ically averaged values yield the lower bound. The large differences

(Figures 4 and 5) are attributed to the fact that, as in saturated flow,

the direct averaging assumes a constant pressure head gradient over

each homogeneous soil block. In reality, the gradient varies with y
because of the dependence of K on y. In other words, direct

averaging does not consider the actual flow behavior and thus

exaggerates the variability of conductivity between blocks and

yields unrealistic values for the effective K [Yeh et al., 1985b].

[27] It is interesting to note that the effective K values derived

from the MC simulation for both flow regimes are reasonably close

to those based on the velocity of the center of the tracer mass

(Figures 4a and 4b). This implies that the estimated conductivity

curves using the MC simulation correctly predict the movement of

the center of the solute plume. Therefore they do indeed represent

the effective unsaturated K for the flow field.

[28] Note that the analytical method was applied to derive the

effective K over the y range (�5 to �20 m) from which the spatial

statistics of the Gardner model were derived. As shown in

Figure 4b, the effective K in the direction parallel to bedding,

Figure 3. Simulated pressure head field and streamlines for flow parallel to bedding for mean pressure heads, H, of
(a) �1 m, (b) �5 m, (c) �10 m, and (d) �20 m (note that flow parallel to bedding is analyzed by rotating the media
used for flow perpendicular to bedding by 90�).
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based on the analytical solution, is close to both the numerical and

tracer data. However, the conductivity in the direction perpendic-

ular to bedding, based on the analytical solution, is somewhat

different from both numerical and tracer data (Figure 4a). This

difference may be due to the fact that the unsaturated K for the MC

simulations are based on the vG-M model, whereas those for the

analytical solution are based on the Gardner model. Consequently,

the spatial statistics based on the Gardner model are not expected

to reproduce the spatial variability characterized by the vG-M

model over a broad range of y (i.e., �5 to �20 m). In order to

obtain a better agreement, the unsaturated K data should be divided

over a range of smaller y intervals in which the two models

produce near identical K. That is, the spatial statistics of parameters

for the Gardner model should be treated as a function of y.
[29] The effective properties from the stochastic theory are

ensemble-average properties, which can be quite different from

the spatially averaged properties that involve only a single realiza-

tion of the heterogeneity. The ensemble properties will be equiv-

alent to the spatially averaged properties if the spatial scale of the

flow domain is large compared with the correlation scale of the

Figure 4. Effective hydraulic conductivity for flow (a) perpendi-
cular to bedding and (b) parallel to bedding (both Monte Carlo
(MC) and direct data are flow-based averages, whereas tracer data
are tracer-based K; the fitted MC and tracer data overlay each other
in Figure 4a).

Figure 5. Macroscopic anisotropy (ratio of K parallel to bedding
to K perpendicular to bedding) based on four different methods.

Figure 6. Standard deviation for the effective hydraulic con-
ductivity for flow (a) perpendicular to bedding and (b) parallel to
bedding.

Figure 7. Effective moisture retention curves based on different
methods (qh and qv refer to averaging for flow parallel to bedding
and perpendicular to bedding, respectively; both MC and direct
data are flow-based averages).
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heterogeneous flow field. Deviation of the spatially averaged

effective K of individual realizations from the ensemble average

for the two flow regimes is indicated in Figure 6 by the standard

deviation (SD). However, the SD is smaller for flow parallel to

bedding than for perpendicular to bedding. More importantly, the

SD data indicate that the lower bound of the effective K for flow

parallel to bedding is as large as the upper bound of the effective K

for flow perpendicular to bedding. This suggests that the moisture-

dependent anisotropy exists not only in the ensemble property but

also in the individual realizations.

[30] The effective MRCs (Figure 7) derived from the MC

simulations show some but small anisotropy (they almost overlay

each other). However, this property, in theory, must be scalar. This

anisotropy may be a consequence of the small domain size used in

the simulation. Nonetheless, the curves are very close to the MRC

estimated on the basis of a deterministic approach that uses an

arithmetic average of all the q values generated for each element at

a given y using the parameters specified for that element.

5.3. Analysis of Concentration Distribution and
Macrodispersivity

[31] For both cases of flow perpendicular and parallel to bed-

ding, snapshots were taken at several times of the simulated two-

dimensional plume. At each sampling time, the two-dimensional

plume was averaged over the length across the flow domain to

obtain the concentration profiles as a function of distance along the

flow direction. A space/ensemble averaging was used, with spatial

averaging being performed only along directions of statistical

homogeneity. Fifty averaged profiles corresponding to the 50

random fields were averaged to obtain the ensemble concentration

profile. As discussed later, the ensemble profiles were then used to

evaluate their spatial moments using equation (10).

Figure 8. Simulated concentration distribution for a single realization at (a) 400 days, (b) 700 days, and (c) 1000
days and (d) the averaged concentration profile at those times for flow perpendicular to bedding for a mean pressure
head of �1 m.
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[32] Figures 8a, 8b and 8c are snapshots of the simulated plume

for a single realization and for flow perpendicular to bedding at

400, 700, and 1000 days after release of a conservative tracer

across the top boundary of the heterogeneous media (Figure 1).

Similarly, Figures 9a, 9b, and 9c are snapshots of the plume at

identical sampling times for flow parallel to bedding for the same

single realization (Figure 1).

[33] Both flow regimes (Figures 8 and 9) are for a mean pressure

head of �1.0 m. The averaged concentration profiles for the two

flow regimes and for the corresponding sampling times are illus-

trated in Figures 8d and 9d. A comparison of Figures 8 and 9 shows

that the two-dimensional concentration distribution is more erratic

in the case of flow parallel to bedding than for flow perpendicular to

bedding (Figures 9a, 9b, and 9c versus Figures 8a, 8b, and 8c).

Bedding perpendicular to flow direction enhances lateral mixing

and prevents rapid growth of preferential flow paths. On the

contrary, bedding parallel to flow facilitates preferential flow,

leaving solute trapped in low permeable regions behind. Small

numerical dispersion is the only lateral mixing mechanism. Con-

sequently, the averaged concentration profiles for flow perpendic-

ular to bedding (Figure 8d) exhibit the typical bell-shaped

distribution as described by the Fickian convection-dispersion

equation. On the contrary, the concentration profiles for flow

parallel to bedding are highly skewed and characterized by multiple

peaks, and spread out over greater distances, characteristics of a non-

Fickian behavior. In addition, Figure 9 suggests an enhanced tailing

and increasingly preferential flow with the distance traveled. Similar

results were also reported byWildenschild and Jensen [1999b]. This

suggests that a dead-end pore model [Coats and Smith, 1964] or a

mobile-immobile (MIM) zone model [e.g., Bond and Wierenga,

Figure 9. Simulated concentration distribution for a single realization at (a) 400 days, (b) 700 days, and (c) 1000 days
and (d) the averaged concentration profile at those times for flow parallel to bedding for a mean pressure head of�1 m
(note that flow parallel to bedding is analyzed by rotating the media used for flow perpendicular to bedding by 90�).
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1990] may be an appropriate model for reproducing solute profiles

similar to those in Figure 9. Nonetheless, on the basis of results of

soil column experiments, Padilla et al. [1999] speculated that the

fitted parameters of the MIM model might vary with the length of

the experiment until the Fickian regime is fully established. Results

of our study lead us to further speculate that the parameter values for

a MIM transport model will depend on the relationship between the

flow direction and the longitudinal axis of the heterogeneity.

[34] Notice that Figures 8 and 9 depict the actual two-dimen-

sional concentration distribution for a single realization of the

heterogeneous media. These actual concentration distributions can

be quite different from the ensemble-mean concentrations, based

on the convection-dispersion equation (3) or a MIM model using

effective properties. While the two-dimensional mean concentra-

tions are not shown, their distribution over the length across the

flow domain will be similar to the average concentration profiles

shown in Figures 8d and 9d, provided the ergodicity is met. Hence

it is apparent that the disagreement between the actual and the

ensemble mean concentrations is far greater for flow parallel to

bedding than for flow perpendicular to bedding. In other words, the

concentration variance (or uncertainty) associated with the mean

concentration predicted by the effective K and macrodispersion

approach is greater for flow parallel to bedding than for flow

perpendicular to bedding.

[35] Plots (not shown here) of the second and third moments as

a function of time for different mean pressure head fields also

support the preceding observations. For flow perpendicular to

bedding the second moment was found to increase at some

constant rate after a short period. The third moment (i.e., skewness)

of the plume was generally very small, indicating Gaussian

concentration distributions. On the contrary, values of the third

moment for flow parallel to the bedding were large, indicating non-

Gaussian concentration distribution (i.e., non-Fickian behavior).

These results suggest that the Fickian regime is reached much

earlier for cases with flow perpendicular to bedding than for those

with flow parallel to bedding. Furthermore, it was found that the

skewness increased with an increase in mean tension of the flow

field. Padilla et al. [1999] observed a similar behavior in soil

column experiments as the soil was desaturated.

[36] Figures 10 and 11 illustrate the asymptotic longitudinal

macrodispersivity estimates for flow perpendicular and parallel,

respectively, to bedding. For both cases, dispersivity increases with

an increase in mean tension. However, the longitudinal macro-

dispersivity for flow parallel to bedding is much greater than for

flow perpendicular to bedding.

5.4. Comparison of Macrodispersivities with Stochastic
Estimates

[37] As a check on the trend in dispersivity estimates for flow

parallel and perpendicular to bedding, an attempt was made to

compare the numerical estimates with those based on stochastic

theory. With the flow being steady and under gravity drainage

(unit-mean gradient), existing stochastic results for saturated media

are adopted for unsaturated media. The variance of unsaturated K is

the primary controlling factor for macrodispersivity. Therefore, for

application to unsaturated media, the variance of ln Ks is replaced

with the variance of log unsaturated K. To obtain stochastic

estimates, each flow configuration was treated separately.

[38] Mantoglou and Gelhar [1985] derived approximate expres-

sions for macrodispersivities in unsaturated media for flow per-

pendicular to bedding. They showed that the asymptotic value of

tension-dependent longitudinal macrodispersivity, A?, under unit

mean gradient condition, is

A? Hð Þ ¼ s2LnKlz

g2
; ð12Þ

where A? depends on the mean pressure head H, sLnK
2 is the

variance in log unsaturated K, and g is a flow factor that depends

on the direction of mean flow and the orientation of heterogeneity.

Equation (12) represents the asymptotic macrodispersivity estimate

for steady state uniform flow with uniform mean tension. Again, it

applies to a plume that is much larger than the size of the

heterogeneity and has been displaced for a large distance. Note that

sLnK
2 in equation (12) becomes rather large for dry soils. In our

case, at a tension of 1 m, sLnK
2 is about one, whereas at a tension of

20 m, sLnK
2 is about three.

[39] To apply equation (12), an estimate of lz for unsaturated K

is needed. As discussed earlier, a lz of the order of 1 m was used

for the MC simulations. However, as the saturation decreases, an

increase in the variance of log conductivity is expected to be

compensated in part by a decrease in the correlation scale of log

unsaturated K [Russo, 1993]. Also, the g factor in a predominantly

vertical unsaturated flow through a layered system would be less

than 1; it is approximately the ratio of the harmonic and geometric

means of unsaturated K. Using a correlation length of 10 cm

(approximate measurement scale for small-scale measurements for

unsaturated K), and g estimates based on the ratio of the harmonic

Figure 10. Longitudinal macrodispersivity as a function of mean
pressure head for flow perpendicular to bedding.

Figure 11. Longitudinal macrodispersivity as a function of mean
pressure head for flow parallel to bedding (note that flow parallel to
bedding is analyzed by rotating the media used for flow
perpendicular to bedding by 90�).
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and geometric means, we obtained dispersivity estimates perpen-

dicular to bedding that are on the order of tens of centimeters at

relatively low tensions of up to 2 m (Figure 10). These estimates

are of the same order of magnitude as those based on ensemble-

averaged MC simulations. The stochastic-based solutions quickly

diverge from the ensemble averages at higher mean tensions that

are on the order of tens of meters, suggesting that a direct

application of equation (12) to relatively dry soils is inappropriate.

Nonetheless, it is encouraging to note that in spite of simplifying

assumptions, the numerical estimates compare favorably, at low

tensions, with those based on equation (12).

[40] For flow parallel to bedding, we again estimated macro-

dispersivities through a relatively simple extension of the saturated

media theory. For stratified media with flow parallel to bedding,

Gelhar and Axness [1983] derived an equation for longitudinal

macrodispersivity, Ak:

Ajj Hð Þ ¼ 1:31l0:5
x s2LnKlz

g2a0:5
T

: ð13Þ

A lx of 5 m was used for the MC simulations. However, similar to

lz, with a decrease in saturation, we expect a decrease in the

correlation scale of log unsaturated K. Using lx = 30 cm (lx > lz),
and a local transverse dispersivity, aT, of 5 cm, we obtain, at low

tensions of up to 2 m, macrodispersivity estimates of the order of

1 m for flow parallel to bedding. Again, these are of the same order

of magnitude as those based on the Monte Carlo ensemble average

(Figure 11). However, at higher tensions, we notice considerable

disagreement between the ensemble averages and the stochastic

results. Apparently, with an increase in sLnK
2 , there is a greater

deviation between the numerical and stochastic solutions. The lack

of a reasonable agreement between the numerical and stochastic

solutions at high tensions raises questions regarding Russo’s [1993]

conclusion about vadose zone macrodispersivities being defined in

a manner similar to those for saturated media.

6. Summary and Concluding Remarks

[41] Ensemble-averaged effective unsaturated conductivities are

derived on the basis of MC simulation, stochastic/analytical, direct

averaging, and tracer mass methods for two principal directions

(flow perpendicular and flow parallel to bedding). Results show

that macroscopic anisotropy of the effective unsaturated K

increases with increasing tension, but the increase is rather mild

for the heterogeneous media considered in this work. Estimates

based on stochastic formulas compare well with the ensemble

average of MC estimates for effective unsaturated K. This is an

important result, considering the fact that the stochastic theory,

although widely used and cited, has not been tested otherwise for

the relatively high-tension regime considered in this work, where

the first-order approximation may fail.

[42] Longitudinal macrodispersivity depends on the mean pres-

sure head; it increases as the soil becomes drier. Longitudinal

macrodispersivity values for flow parallel to bedding are greater

than those for flow perpendicular to bedding. While the averaged

concentration profiles for flow perpendicular to bedding show

approximate Fickian behavior, the averaged profiles for flow

parallel to bedding are highly skewed and non-Fickian. Compar-

isons of the actual two-dimensional concentration distributions and

the average concentration profiles suggest that the ensemble mean

concentration can be very different from the actual concentration

distribution for flow parallel to bedding.

[43] For both flow regimes of parallel and perpendicular to

bedding, the macrodispersivities based on stochastic theory com-

pare reasonably well to the numerical ensemble averages for mean

tensions of the order of 100 cm. However, with an increase in

variance of log unsaturated K, we notice an increase in deviation

between the numerical and stochastic solutions. The lack of a

reasonable agreement between the numerical and stochastic sol-

utions at high tensions raises questions about vadose zone macro-

dispersivities being defined in a manner similar to those for

saturated media.
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